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Abstract

The constant-elasticity-of-substitution (CES) aggregator and its demand
system are ubiquitous in business cycles theory, macroeconomic growth and
development, international trade and other general equilibrium fields; this
is because the CES aggregator has many knife-edge properties that help
to keep the analysis tractable in the presence of many goods and factors.
However, this also makes it hard to tell which properties of CES are respon-
sible for certain results. Furthermore, it is necessary to relax some of those
properties for certain applications. In this article, I review several classes of
non-CES aggregators, each of which removes some properties of CES and
keeps the rest to introduce some flexibility while retaining the tractability
of CES as much as possible. These classes are named after the properties
of CES they keep. I explain how these classes are related to each other and
discuss their relative strengths and weaknesses to indicate which classes are
suited for which applications.
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CES:
constant elasticity of
substitution

1. INTRODUCTION

The scope of this article is summarized in Figure 1. The figure shows that the constant-elasticity-
of-substitution (CES) aggregator is an intersection of many different classes of aggregators, and
that we could depart from CES in many different directions.

We all know CES and love using it. CES is ubiquitous in business cycles theory, macroe-
conomic growth and development, international trade and other general equilibrium fields.
Most researchers in these fields use CES almost anywhere they need some kinds of aggregators
(preferences, production functions, matching functions, externalities, etc.), since CES has many
knife-edge properties that help to keep the analysis tractable even in the presence of many goods
and factors. But precisely because it has many properties, it is hard to tell which properties are
responsible for particular results.Moreover, it is desirable or even necessary to relax some of them
for certain applications. Yet, we may want to relax just a few at a time, while keeping the rest. This
is important not only to retain the tractability of CES as much as possible, but also to understand
the implications of departing from CES in different directions.

A large number of studies have already attempted to depart from CES. However, I find many
of them problematic for several reasons. First, many people tend to use a particular alternative
to CES repeatedly for all purposes. For example, Stone-Geary is a favorite of many scholars
whenever they need non-CES, even though Stone-Geary is just one of many possibilities and it
has its own limitations. Translog is another example. Quite often, I can think of better options,
depending on the goal of the analysis. Second, the relation between different classes of non-CES
aggregators is poorly understood. For example, some studies use a demand system that belongs
to the direct explicit additivity class, as defined below, and claim that it is general enough to
encompass all homothetic demand systems. In some other studies, the authors use CES and yet
claim that the results are more general because they carry over to any demand system that satisfies

Homothetic

HIIAHDIA

IIADIA

Non-
homothetic

CES

CES

HSA

IEADEA

Figure 1

Landscape of the non-CES world. Abbreviations: CES, constant elasticity of substitution; DEA, direct
explicit additivity; DIA, direct implicit additivity; HSA, homothetic with a single aggregator; HDIA,
homothetic direct implicit additivity; HIIA, homothetic indirect implicit additivity; IEA, indirect explicit
additivity; IIA, indirect implicit additivity.
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a particular set of assumptions, despite the fact that CES is the only demand system that satisfies
that set of assumptions.

The fact that such claims are frequently made and repeated by others indicates the need for
a guided tour that collects in one place many results on different classes of non-CES, which are
scattered in the literature of the past 60 years.However,my aim is not just to write a guided tour by
explaining how they are related. I also aim to highlight some key features of different classes—both
their strengths and weaknesses—and to indicate which classes are well-suited for what purposes,
providing a sort of user’s guide.

Before proceeding, three caveats should be mentioned. First, most demand systems reviewed
here have found many applications, but my main goal is to explain the relation between differ-
ent demand systems and their relative merits. For this reason, several applications are cited but
their findings are not discussed in detail, unless they shed lights on the relative merits of differ-
ent demand systems. Furthermore, no applications to monopolistic competition are even cited for
the reasons explained in the concluding section. Second, although the materials covered here are
technical in nature, I try to keep the discussion as nontechnical as possible. I offer some intuition
behind the main results, but I provide no formal proofs and skip most derivations. Also, some reg-
ularity assumptions, such as continuity and differentiability, are not explicitly stated. This review
should thus never be considered as a substitute for consulting the references cited. Finally, my
goal is to clarify. Hence, I do not hesitate to drop some original terminologies in favor of alterna-
tives, whenever I judge that they are so uninformative and/or misleading that they have become
constant sources of confusion.1

2. STANDARD CES

Let us start with CES of the following form and its monotone transformation:2

U (x) =
[

n∑
i=1

(βi )
1
σ (xi )1−

1
σ

] σ
σ−1

. 1.

For themoment, let us interpretU (x) as the direct utility function.Thus, xi ≥ 0 is consumption
of good i ∈ I = {1, 2, . . . , n} , with x = (x1, . . . , xn ) ∈ Rn

+ being the consumption vector; βi > 0 is
the share-shift parameter of i ∈ I; and σ ∈ (0, 1) ∪ (1,∞) is the (constant) elasticity of substitu-
tion.3 Let p = (p1, . . . , pn ) ∈ Rn

+ denote the price vector. Then, maximizing U (x) subject to the
budget constraint, px = ∑

i∈I pixi ≤ E yields the CES demand

xi = βi(pi )−σE∑
k∈I βk(pk )

1−σ
= βi(pi )−σE

(P(p))1−σ
= βi

(
pi

P(p)

)−σ

U (x), 2.

where P(p) is the cost-of-living index given by

P(p) ≡ min
x∈Rn+

{
px|U (x) ≥ 1

} =
[

n∑
i=1

βi(pi )1−σ

] 1
1−σ

. 3.

1Two such examples are “generalized CES” and “additive preferences.”
2Even though Arrow et al. (1961) proposedCES as the constant-returns-to-scale production function with two
factors, capital and labor, andmany subsequent studies on non-CES, e.g., Sato (1975, 1977), restrict themselves
on the two-factor cases, I focus on non-CES aggregators defined over an arbitrary number of factors or goods.
3Although Leontieff, Cobb-Douglas, and linear preferences may be viewed as special cases of CES with σ = 0,
σ = 1, and σ = ∞, I do not discuss them separately for the readability.
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From these, the budget share of i ∈ I and the indirect utility function are obtained as

mi ≡ pixi
E

= βi

(
pi

P(p)

)1−σ

= (βi )
1
σ

(
xi

U (x)

)1− 1
σ

, 4.

U
( p
E

)
≡ 1
P(p/E )

=
[

n∑
i=1

βi

(
E
pi

)σ−1
] 1

σ−1

. 5.

Some notable properties of the standard CES are the following.

■ Income elasticity of demand for each good is 1. No good is neither a necessity nor a luxury.
This is due to the homotheticity of CES.

■ Marginal rate of substitution between any two goods, and hence their relative inverse de-
mand, pi/p j = ∂U (x)/∂xi

∂U (x)/∂x j
= [(xi/x j )/(βi/β j )]−1/σ , is independent of the quantity of a third

good. This is due to the direct explicit additivity of CES. Furthermore, xi and x j enter only
as the ratio xi/x j .

■ Relative demand between any two goods, xi/x j = (βi/β j )(pi/p j )−σ , is independent of the
price of a third good. This is due to the indirectly explicit additivity of CES, as defined
below. Furthermore, pi and p j enter only as the ratio pi/p j .

■ The elasticities of substitution between all pairs of goods are identical across all pairs, and
the price elasticity of demand for each good, holding P(p) fixed, is constant and identical.4

■ All goods are either gross complements [i.e., mi is increasing in its relative price, pi/P(p)]
for σ < 1 or gross substitutes [i.e.,mi is decreasing in pi/P(p)] for σ > 1].

■ All goods are either essential [i.e., pi → ∞ implies P(p) → ∞] for σ < 1 or inessential [i.e.,
pi → ∞ implies P(p) < ∞] for σ > 1.

■ If the goods are gross substitutes, they cannot be essential under CES.
■ Demand for any good remains strictly positive when its relative price becomes arbitrarily

high (no choke price).
■ Demand for any good goes up unbounded when its relative price becomes arbitrarily low

(no satiation).
■ With σ ̸= 1, one could set βi = 1 by choosing the unit of measurement of each good

appropriately; the standard CES can be assumed to be symmetric without loss of generality.

These features of CES make it highly tractable, which explains its popularity. CES possesses a
high degree of symmetry. The impact on the relative demand and the relative price between the
two goods can be studied independently of what happens to other goods. This feature makes CES
tractable even when it is defined over an arbitrarily large number of goods. No choke price/no
satiationmeans that we do not need to worry about a corner solution.Knowing the local properties
of demand, say whether the goods are gross complements or gross substitutes, is enough to know
its global properties (say, whether the goods are essentials or not). Moreover, being characterized
effectively by one parameter, σ , simplifies the task of estimating and calibrating.

However, precisely because CES has so many properties, it is hard to tell which ones are re-
sponsible for certain results. Moreover, these features make CES restrictive and inflexible.5 We

4As discussed by Uzawa (1962), McFadden (1963), and Blackorby & Russell (1981), the elasticities of sub-
stitution between every pair being constant implies the common elasticity of substitution, and that the price
elasticity of demand for each good is constant (and common). The reverse is not true. The price elasticities
of demand for each good being constant implies neither that all goods share the common price elasticity nor
that the elasticity of substitution between every pair is constant.
5One often-used quick fix to remove some restrictions of CES is nested CES, going back at least to the work
of Sato (1967). Readers are referred to Caselli (2016) for an example of extensive use of nested CES. Indeed,
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DEA: direct explicit
additivity

certainly do not need all these features every time we need some types of aggregators somewhere
in our models. Yet, we do not need to drop all of them. Instead, we may want to drop just a few
at a time, not only to retain the tractability of CES as much as possible, but also because which
features should be dropped and which features should be kept depend on the goal of the analysis.
For some purposes, we may need goods to differ in their income elasticities, not in their price
elasticities; for other purposes, we may need goods to differ in their price elasticities, not in their
income elasticities. For some applications, we may need a mixture of gross complements and gross
substitutes, or a mixture of essentials and inessentials; for some other applications, we may want
to avoid the local properties of demand systems dictating their global properties, and so on.

The questions are then, How do we depart from CES and make it more flexible in some di-
mensions while maintaining the restrictive features in the others to keep its tractability as much
as possible? And how do we achieve this systematically? With these goals in mind, I organize the
remainder of this review by different classes of non-CES, each of which is defined and named by
a particular property of the standard CES it maintains.

3. DIRECT EXPLICIT ADDITIVITY AND INDIRECT
EXPLICIT ADDITIVITY6

Let us start with the following three properties. (In what follows, M[·] denotes a monotone
transformation.)

■ Direct explicit additivity (DEA): Preferences are called DEA if the direct utility function,
U (x), is explicitly additive, that is,

U (x) = M
[∑

i∈I
ūi (xi )

]
, 6.

where ūi(·), i ∈ I, satisfy some additional conditions to ensure thatU (x) is strictly increasing
and quasi-concave.

any multi-sector models in which the intersectoral demand is given by the representative consumer with CES
preferences and each sector produces its output using a CES production function or a variety of goods ag-
gregated by CES—such as the multi-sector extension of Eaton & Kortum’s (2002) model by Costinot et al.
(2012) and Caliendo & Parro (2015)—effectively use nested CES. And it works well for some purposes. For
example, the relative demand for skilled versus unskilled labor depends on the price of capital, if capital and
skilled labor are in the same nest and unskilled labor is not (Krusell et al. 2000). Nevertheless, nested CES
inherits much of the restrictive features of CES since CESs are its building blocks.Moreover, any flexibility of
nested CES is entirely due to how goods are partitioned into different nests and not to the flexible functional
forms. For example, the elasticities of substitution between all pairs of goods within the same nest are iden-
tical, relative demand between two goods in the same nest is independent of the prices of a third good, some
combinations of essential and inessential goods are ruled out, essential goods cannot be gross substitutes, and
so on. Further, we can use any of the homothetic non-CES aggregators discussed below as a building block in
a nested structure. Such nested homothetic non-CES can do everything nested CES can do and more.
6Following Hanoch (1975), I distinguish four types of additivity: direct explicit additivity (DEA), indirect
explicit additivity (IEA), direct implicit additivity (DIA), and indirect implicit additivity (IIA). Being the first
type of additivity introduced in the literature,DEA is often called simply “additive” without any qualifier. This
common practice unfortunately created the false impression that IEA,DIA, and IIA were special cases of DEA.
Quite to the contrary, DEA is a special case of DIA and is disjoint with IEA and IIA with the sole exception of
CES, as shown in Figure 1. Likewise, IEA is often called simply “indirectly additive,” which created the false
impression that IIA was a special case of IEA. Again, quite to the contrary, IEA is a special case of IIA. These
common practices have become frequent sources of confusion. To avoid such confusion, I refer to these two
classes of preferences only by DEA and IEA.

www.annualreviews.org • Non-CES Aggregators 239

A
nn

u.
 R

ev
. E

co
n.

 2
02

3.
15

:2
35

-2
65

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
21

6.
80

.4
8.

2 
on

 0
9/

13
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



EC15CH10_Matsuyama ARjats.cls August 25, 2023 17:16

IEA: indirect explicit
additivity

■ Indirect explicit additivity (IEA): Preferences are called IEA if the indirect utility function,
U (p/E ), is explicitly additive, that is,

U
( p
E

)
≡ 1
P(p/E )

= M
[∑

i∈I
v̄i

( pi
E

)]
, 7.

where v̄i(·), i ∈ I, satisfy some additional conditions to ensure that U (p/E ) is strictly
decreasing and quasi-convex, or, equivalently, that P(p/E ) is strictly increasing and
quasi-concave.

■ Homotheticity: Preferences are called homothetic if the direct utility functionU (x) can be
represented as a monotone transformation of a linear homogenous function of x as follows:
U (x) = M[X (x)], where X (x) satisfies X (λx) = λX (x) for any λ > 0.

Clearly, from Equation 1 and Equation 3, CES satisfies all three properties and hence belongs
to the three classes labeled as DEA, IEA, and Homothetic in Figure 1. Furthermore, CES is the
only intersection of the DEA and Homothetic classes (Bergson’s Law). Samuelson (1965) showed
that CES is also the only intersection of the DEA and IEA classes. Berndt & Christensen (1973,
theorem 6) showed that CES is also the only intersection of the IEA and Homothetic classes.
These three classes are thus pairwise disjoint with the sole exception of CES, as shown in Figure 1,
and hence they offer three alternative ways of departing from CES.

In the remainder of this section, we discuss DEA and IEA in detail. We will turn to the
Homothetic class in Section 5.

3.1. Direct Explicit Additivity

From Equation 6, it is easy to show that DEA satisfies the following properties.

■ Marginal rate of substitution between any two goods, and hence their relative inverse
demand, is independent of the quantity of a third good:

pi
p j

= ∂U (x) /∂xi
∂U (x) /∂x j

= ū′
i (xi )

ū′
j

(
x j
) .

From this expression, the inverse demand curve for good i ∈ I can be derived as
pi = ū′

i (xi )E∑
j ū

′
j (x j )x j

.

■ The relative inverse demand is not a function of xi/x j , and hence a proportional increase in
xi and x j changes pi/p j , unless ūi(·), i ∈ I, are all power functions with a common exponent,
i.e., with the sole exception of CES.

This in turn implies the following point.

■ DEA is homothetic if and only if it is CES (Bergson’s Law), as indicated in Figure 1.

Many non-CES commonly used in the literature belong to the DEA class.

3.1.1. Example 1: quasi-linear. Let

U (x) = M

xk +
n∑
i ̸=k

ui (xi )

,
where ui(xi ), i ̸= k are all strictly concave. The income elasticity of k is one, and those of i ̸= k are
zero.

240 Matsuyama

A
nn

u.
 R

ev
. E

co
n.

 2
02

3.
15

:2
35

-2
65

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
21

6.
80

.4
8.

2 
on

 0
9/

13
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



EC15CH10_Matsuyama ARjats.cls August 25, 2023 17:16

3.1.2. Example 2: distance to the bliss points. Let

U (x) = −
n∑
i=1

βi(bi − xi )1+δ ,

for 0 < xi < bi where δ > 0. (This one does not satisfy strict monotonicity.) For δ = 1, this is the
negative of the quadratic loss function.

3.1.3. Example 3: Stone-Geary.7 Let

U (x) =
[

n∑
i=1

(βi )
1
σ (xi − x̄i )1−

1
σ

] σ
σ−1

,

or equivalently,

U (x) =
n∑
i=1

(
β̌i

)1/σ
(xi − x̄i )1−1/σ

1 − 1/σ
,

for xi ≥ min{x̄i, 0}, where x̄i > 0 may be interpreted as the subsistence level of consumption of
good i and −x̄i > 0 as the nontransferable endowment of good i. With the budget constraint,∑n

i=1 pixi ≤ E, the demand takes the form of

mi ≡ pixi
E

= Bi (p) + 0i (p)
E

,

where
∑n

i=1 Bi(p) = 1 and
∑n

i=1 0i(p) = 0 for E large enough to ensure that mi > 0 for all i ∈ I.
Until recently, Stone-Geary was by far themost commonly used of nonhomothetic preferences

in the growth, trade, and development fields (see, e.g., Caselli & Ventura 2000; Kongsamut et al.
2001; Markusen 1986, 2013; Matsuyama 1992, 2009). In fact, it was so common that some people
use “Stone-Geary” as synonymous with “nonhomothetic.”

Some key properties of Stone-Geary are the following.

■ The budget share of i (its average propensity to consume) is decreasing in E (i.e., a necessity)
for 0i(p) > 0 and increasing in E (i.e., a luxury) for 0i(p) < 0.

■ The marginal propensity to consume, ∂ (pixi )/∂E = Bi(p), is independent of E, which allows
for aggregation across households with different expenditure.

■ It is asymptotically homothetic so that nonhomotheticity is quantitatively important only
for poor households/countries. This feature not only is inconsistent with the evidence of
stable slopes of Engel’s curves (Comin et al. 2021) but also makes Stone-Geary difficult to
fit the long-run data (Buera & Kaboski 2009).

■ The price elasticity of demand for a necessity (a luxury) is increasing (decreasing) in E.

■ The key parameters, x̄i, are defined in quantity of good i, hence they are not unit-free. One
could thus choose the unit of each good so that x̄i = 1, 0, or −1 without loss of generality. In
other words, Stone-Geary cannot meaningfully distinguish more than three goods in terms
of their income elasticities.

■ If two or more goods have a subsistence level of consumption—say, x̄1 > 0 and x̄2 > 0—
the domain of this utility function cannot be extended unambiguously to 0 ≤ x1 < x̄1 and
0 ≤ x2 < x̄2.

7The original Stone-Geary,U(x) = ∑n
i=1 βi ln(xi − x̄i ), was proposed as a departure from Cobb-Douglas.
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LES: linear
expenditure system

CRES: constant ratios
of elasticities of
substitution

CRIE: constant
relative income
elasticity

3.1.4. Example 4. Let

U (x) = −
n∑
i=1

β̃i exp (−αixi ),

which can be viewed as a limit of Stone-Geary as σ → 0 and x̄i = (1 − 1/σ )/αi → −∞. It implies
that αixi − α jx j is independent of E.

Examples 2, 3, and 4 are often called the Pollak family (Pollak 1971) family or linear expenditure
systems (LES).8 They all imply that the marginal propensity to consume each good is constant—
hence they have nice aggregation properties across households with different total expenditures—
and that they are all asymptotically homothetic.9

3.1.5. Example 5: constant ratios of elasticities of substitution. Let

U (x) =
[

n∑
i=1

(βi )
1
σi (xi )

1− 1
σi

] σ0
σ0−1

; σi − 1
σ0 − 1

> 0,

or equivalently,

U (x) =
n∑
i=1

β̌i(xi )
1−1/σi

1 − 1/σi
; σi ̸= 1.

Houthakker (1960) called this “direct addilog.” Let ηi be the income elasticity of i and σi j be
the Allen/Uzawa10 elasticity of substitution between i and j. Then, for any i ̸= j ̸= k ∈ I, we have

σi j = σiσ j

σ̄
; ηi

η j
= σik

σ jk
= σi

σ j
,

where σ̄ ≡ ∑n
l=1mlσl is the budget-share weighted average of {σl }. Notice that σi j is not constant,

because σ̄ is not. Yet the ratio σik/σ jk is constant, σi/σ j . For this reason, Mukerji (1963) called
it constant ratios of elasticities of substitution (CRES). Note that ηi/η j is also constant, σi/σ j .
For this reason, Caron et al. (2014) called it constant relative income elasticity (CRIE). Unlike
the Pollak family, nonhomotheticity does not disappear as the expenditure goes up. However, the
(constant) ratio of income elasticities between any two goods is always equal to the (constant) ratio
of their price elasticities. This makes it unclear whether any results obtained by departing from
CES within CRES = CRIE should be interpreted as due to the income elasticity differences, as
Fieler (2011) and Caron et al. (2014, 2020) did, or as due to the price elasticity differences.11

Indeed, this is a general feature of DEA, as shown by Houthakker (1960), Goldman & Uzawa
(1964), and Hanoch (1975, equation 2.11), among others.

8They are not to be confused with linear demand systems (LDS), derived from linear-quadratic
U (x) = ∑n

i=1 δixi − (1/2)
∑n

i, j=1 γi jxix j . LDS are not DEA, unless γi j = γ ji = 0 for all i ̸= j.
9LES is not the only demand system that allows for aggregation across households with different total expen-
ditures. One example is price independent generalized linearity (PIGL) proposed by Muellbauer (1975, 1976)
and recently applied by Boppart (2014). Another is the hierarchical demand system discussed below. These
demand systems are not asymptotically homothetic.
10Hicks originally defined the elasticity of substitution for n = 2. For n > 2, there are related but alternative
definitions. Allen/Uzawa is one (see, e.g., Uzawa 1962). Morishima (1967) is another. Readers are referred to
Blackorby & Russell (1981, 1989) on this issue.
11Although Fieler (2011) and Caron et al. (2014, 2020) performed some robustness checks using alterna-
tive classes of nonhomothetic preferences, income and price elasticities are still tightly linked under those
alternatives, with the exception of isoelastic nonhomothetic CES (Example 7) used by Caron et al. (2020).
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3.1.6. Pigou’s Law. Under DEA, for any i ̸= j ̸= k ∈ I, we have
ηi

η j
= σik

σ jk
.

Clearly, Bergson’s Law is a special case. Pigou’s Law also explains why, with quasi-linear pref-
erences (Example 1), the income elasticity of k is 1 and those of i ̸= k are 0, and why, with
Stone-Geary (Example 3), the relative price elasticity of luxury goods must be decreasing in the
total expenditure, because their income elasticities are also decreasing in the total expenditure, due
to its asymptotic homotheticity. It is also the reason behind the (well-known but counterintuitive)
result that the optimal commodity taxation, which should tax the goods with lower price elasticity
more heavily, should tax the goods with lower income elasticity more heavily (see, e.g., Auerbach
1985, Chari & Kehoe 1999).

Pigou’s Law not only is rejected empirically (Deaton 1974) but also suggests a limitation of
using DEA as an attempt to introduce more flexibility to CES. Under DEA, the effects of the
income elasticity differences across goods cannot be disentangled from those of the price elasticity
differences.

3.2. Indirect Explicit Additivity

From Equation 7, it is easy to show that IEA satisfies the following properties.

■ Relative demand for any two goods is independent of the price of any other goods, because

xi
x j

= ∂U (p/E ) /∂ pi
∂U (p/E ) /∂ p j

= v̄′
i (pi/E )

v′
j
(
p j/E

) .
From this expression, the demand curve for good i ∈ I can be derived as xi = v̄′

i (pi/E )∑
j (p j/E )v̄

′
j (p j/E )

.12

■ Relative demand is neither independent of E nor a function of pi/p j , hence a change in E
and a proportional increase in pi and p j shift xi/x j , unless v̄i(·), i ∈ I, are all power functions
with a common exponent, i.e., with the sole exception of CES.

This, in turn, implies the following point.

■ IEA is homothetic if and only if it is CES, as indicated in Figure 1.

3.2.1. Example 6: constant differences of elasticities of substitution. Let

U
( p
E

)
=
[

n∑
i=1

βi

(
E
pi

)σi−1
] 1

σ0−1

; σi − 1
σ0 − 1

> 0,

or equivalently,

U
( p
E

)
=

n∑
i=1

β̃i(E/pi )σi−1

σi − 1
; σi ̸= 1.

Houthakker (1960) called this indirect addilog. Hanoch (1975) called it constant difference of
elasticity of substitution (CDES). Jensen et al. (2011) discuss its properties and the history of its
use in detail. Analogously to CRES = CRIE, one may also call it constant difference of income

12Note that, if v̄′
i (pi/E ) < 0 for 0 < pi/E < zi < ∞; = 0, for pi/E ≥ zi we have that ziE is the choke price.

However, it is easy to see that zi < ∞ for all i would violate the monotonicity of preferences. Thus, contrary
to the claim often made, it is not possible for every good to have a choke price under IEA.
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CDIE: constant
difference of income
elasticities

CDES: constant
differences of
elasticities of
substitution

AIDS: Almost Ideal
Demand System

DIA: direct implicit
additivity

IIA: indirect implicit
additivity

elasticities (CDIE), due to the following relation between income and price elasticities imposed
by IEA, which I call, for want of a better name, indirect Pigou’s Law.

3.2.2. Indirect Pigou’s Law: Houthakker (1960), Hanoch (1975, equation 3.11). Let ηi

denote the income elasticity of i and σi j denote the Allen/Uzawa elasticity of substitution between
i and j. Then, under IEA, we have

σik − σ jk = ηi − η j

for any i ̸= j ̸= k ∈ I.
Again, as for DEA, the effects of the income elasticity differences and those of the price

elasticity differences cannot be disentangled under IEA.
Both (direct and indirect) Pigou’s Laws show a limitation of explicit additivity and of the DEA

and IEA classes of demand systems. Of course, there are many preferences that belong neither to
DEA nor IEA. For example, the linear-quadratic direct utility function,

U (x) =
n∑
i=1

δixi − 1
2

n∑
i, j=1

γi jxix j ,

or constant differences of elasticities of substitution (CDES), augmented by the Stone-Geary
subsistence consumption shifters,

U
( p
E

)
=
 n∑

i=1

βi

(
E −∑n

j=1 p j x̄ j
pi

)σi−1
 1

σ0−1

,

used by Święcki (2017), is not explicitly additive due to the presence of the interactive terms.While
these interactive terms add more flexibility, these functional forms still impose tight links between
the income and price elasticities. So is the Almost Ideal Demand System (AIDS) proposed by
Deaton &Muellbauer (1980a) and applied recently by, e.g., Fajgelbaum & Khandelwal (2016), in
which both income and price elasticities are controlled by the same parameters.

4. DIRECT IMPLICIT ADDITIVITY, INDIRECT IMPLICIT ADDITIVITY,
AND IMPLICIT CES

The restrictive nature of explicit additivity motivated Hanoch (1975) to introduce the weaker
notion of implicit additivity, which makes it possible to control for the income and price elasticity
differences across goods separately.

4.1. Direct Implicit Additivity and Indirect Implicit Additivity

Let us now introduce two weaker properties, direct implicit additivity (DIA) and indirect implicit
additivity (IIA), and the two classes of demand systems they define.13

■ Direct implicit additivity: Preferences are called DIA if the direct utility function,U (x), is
implicitly additive, that is,

M
[

n∑
i=1

ũi (xi,U )

]
= const., 8.

13Hanoch (1975) defines DIA as
∑n

i=1 ũi (xi,U ) = 1 and IIA as
∑n

i=1 ṽi (pi/E,U ) = 1. Though the definitions
in Equation 8 and Equation 9 below are equivalent, they offer some flexibility,which turns out to be convenient
for some applications.
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where ũi(·, ·), i ∈ I, satisfy some additional conditions for strict monotonicity and quasi-
concavity ofU (x). DEA is a subclass of DIA, with ũi(xi,U ) = ūi(xi )g(U ).

■ Indirect implicit additivity: Preferences are called IIA if the indirect utility function,U (p/E ),
is implicitly additive, that is,

M
[

n∑
i=1

ṽi

( pi
E
,U
)]

= const., 9.

where ṽi(·, ·), i ∈ I, satisfy some additional conditions for strict monotonicity and quasi-
convexity ofU (p/E ). IEA is a subclass of IIA, where ṽi(pi/E,U ) = v̄i(pi/E )h(U ).
Implicit additivity has clear advantages relative to explicit additivity.14 It allows us to

control for the price elasticity difference and the income elasticity difference across goods
separately. For DIA, the price elasticity depends on the curvature of ũi(xi,U ) with respect to
xi, and the income elasticity depends on the curvature of ũi(xi,U ) with respect toU ; in partic-
ular, the two elasticities can be controlled separately for ũi(xi,U ) = ūi(xi )gi(U ). Similarly, for
IIA, the price elasticity depends on the curvature of ṽi(pi/E,U ) with respect to pi, and the
income elasticity depends on the curvature of ṽi(pi/E,U ) with respect to U ; in particular,
the two elasticities can be controlled separately for ṽi(pi/E,U ) = v̄i(pi/E )hi(U ).

4.2. Nonhomothetic CES

Due to such flexibility of implicit additivity, the standard CES is not the sole member of the
intersection of DIA and IIA. Indeed, Hanoch (1975) showed that implicit CES defined below
satisfies both DIA and IIA. Furthermore, implicit CES is the only demand system that satisfies
both DIA and IIA, as illustrated in Figure 1.15

4.2.1. Implicit CES. More formally, preferences are called implicit CES if the direct utility
function,U (x), is defined implicitly as[

n∑
i=1

(βi (U ))
1

σ (U ) (xi )
1− 1

σ (U )

] σ (U )
σ (U )−1

≡ 1,

where σ (U ) > 0; ̸= 1, and βi(U ) > 0, i ∈ I, are functions ofU and must satisfy some additional
conditions to ensure that U (x) is strictly monotonic and quasi-concave (see Fally 2022, section
A4). Its indirect utility function,U (p/E ), is written implicitly as[

n∑
i=1

βi (U )
( pi
E

)1−σ (U )
] 1

1−σ (U )

≡ 1;

its cost-of-living index, P(p,U ), is given by[
n∑
i=1

βi (U )
U 1−σ (U )

( pi
P

)1−σ (U )
] 1

1−σ (U )

≡ 1;

andU =U (p/E ) and P = P(p,U ) satisfy the identity PU = E.

14Some people seem to view that any implicitly defined direct or indirect utility functions as in Equation 8
and Equation 9 are illegitimate. My response is that many commonly used functions are defined implicitly;
for example, log is defined as an inverse of an exponential function, and arctangent is defined as an inverse of
a tangent function.
15I am not aware of any existing proof of this. However, it follows from the proof of proposition 4(iii) of
Matsuyama&Ushchev (2017).Though this proposition states that the homothetic restrictions of DIA and IIA
(HDIA and HIIA, defined below) imply homothetic CES, homotheticity does not play any role in the proof.
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This class of preferences is nonhomothetic whenever ∂ lnβi(U )/∂ lnU depend on i and/or
σ (U ) depend onU .Nevertheless, they are CES in that theHicksian demand generated is indistin-
guishable from those generated by the standard CES, because the Hicksian demand is calculated
for a fixed level of the utility.16

Among this class, the following parametric family found many applications in the structural
transformation literature (see, e.g., Bohr et al. 2021, Comin et al. 2021, Cravino & Sotelo 2019,
Fujiwara & Matsuyama 2022, Lewis et al. 2022, Matsuyama 2019, Sposi et al. 2021).

4.2.2. Example 7: isoelastic nonhomothetic CES. Let σ (U ) = σ > 0; ̸= 1 and βi(U ) =
βi(U )εi−σ , where εi > 0 are constants, so that ∂ lnβi(U )/∂ lnU = εi − σ . Then, U (x) is given
implicitly as [

n∑
i=1

(βi )
1
σ (U (x))

εi−σ

σ (xi )1−
1
σ

] σ
σ−1

≡ 1, 10.

where σ > 0 ensures global quasi-concavity, while global monotonicity requires
(εi − σ )/(1 − σ ) > 0.17 By maximizingU (x) subject to

∑n
i=1 pixi ≤ E, the budget shares are

mi = βi(U )εi−σ (pi )1−σ∑n
k=1 βk(U )εk−σ (pk )1−σ

= βi(U )εi−σ
( pi
E

)1−σ

= βi

(
E
P

)εi−1( pi
P

)1−σ

, 11.

where indirect utility,U =U (p/E ), is implicitly given by[
n∑
i=1

βi(U )εi−σ
( pi
E

)1−σ

] 1
1−σ

≡ 1,

where (εi − σ )/(1 − σ ) > 0, the condition for global monotonicity, ensures that U =U (p/E ) is
strictly increasing in E, and the cost-of-living index, P = P(p,E ), is implicitly given by[

n∑
i=1

βi

(
E
P

)εi−1( pi
P

)1−σ

] 1
1−σ

≡ 1,

satisfying P(p,E )U (p/E ) = E.
From Equation 11, we obtain the familiar double-log CES demand systems,

ln
(
mi

m j

)
= ln

(
βi

β j

)
− (σ − 1) ln

(
pi
p j

)
+ (

εi − ε j
)
ln
(
E
P

)
, 12.

with an additional term representing the income effect, with the constant slope εi − ε j that is,
unlike Stone-Geary, consistent with the empirical evidence of the stable slopes of the Engel’s
curve (Comin et al. 2021).18 One could also show that

ηi ≡ ∂ ln xi
∂ lnE

= ∂ ln xi
∂ ln (E/P)

= 1 + ∂ lnmi

∂ ln (E/P)
= 1 + εi −

n∑
k=1

mkεk, 13.

16Another notable feature of implicit CES is that it is the only class in which Allen/Uzawa and Morishima
elasticities of substitution are identical; see Blackorby & Russell (1981; Theorem 3).
17To capture the idea that the rich are less sensitive to price changes, Auer et al. (2022) extends Equation 10
with σ (U ) = max{σ , σ + σ1 lnU }, with σ1 < 0 < σ . This requires tighter parameter restrictions for global
monotonicity.
18Note that (εi ) and (ε′

i ) related by εi = σ + µ(ε′
i − σ ) with µ > 0 imply µ ln(E/P) = ln(E/P′ ), so that they

are isomorphic. Comin et al. (2021, section 2.1.) propose to normalize µ = (1 − σ )/(ε′
b − σ ) so that εb = 1 for

some base good b ∈ I to identify the parameters and to interpretU = E/P as the real expenditure. Of course,
this measure of the real expenditure depends on the normalization. To evaluate the welfare impact of shocks,
it is preferable to use equivalent or compensating variations. On this issue, readers are referred to Deaton &
Muellbauer (1980b, chap.7), Luttmer (2017), Redding & Weinstein (2020), and Baqaee & Burstein (2022).
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PIGL:
price independent
generalized linearity

which means that good i ∈ I is a necessity if and only if εi < ε̄ and is a luxury if and only if εi > ε̄,
where ε̄ ≡ ∑n

k=1mkεk is the budget-share weighted average of εi, i ∈ I. Thus, unlike DEA or IEA,
the income elasticities of demand for different goods, ηi, i ∈ I, can be controlled by the parameters
εi, i ∈ I, separately from the constant elasticity of substitution parameter, σ , which governs the
price elasticity.

To explore further, let us index the goods such that ε1 < · · · < εn, which implies that
η1 < · · · < ηn. That is, the goods are ordered such that higher-indexed goods have higher income
elasticities. Then, from Equation 12 and Equation 13, we obtain the following.

■ A larger U = E/P shifts the budget shares, mi, i ∈ I, toward more income-elastic, higher-
indexed goods in a monotone likelihood way.

■ The income elasticity of i ∈ I, ηi, declines monotonically in U = E/P and hence in E as
follows.

° We have η1 < 1, ηn > 1 for any E > 0.

° For 2 ≤ i ≤ n− 1 (with n ≥ 3), we have ηi > 1for a small E and ηi < 1 for a large E, since

ηi ⋚ 1 ⇔ εi ⋚ ε̄ ≡
n∑

k=1

mk εk.

Thus, for 2 ≤ i ≤ n− 1, good i is a luxury (ηi > 1) for the poor but a necessity (ηi < 1) for
the rich. Even though the ratio of the budget shares of two goods is monotonic inU = E/P and
hence in E, the budget share of good i is hump-shaped. This means that isoelastic nonhomothetic
CES can capture the situations like a private jet being a luxury for most people but a necessity
for the billionaire, or air conditioners or smartphones being necessities for most but luxuries for
the poor.19 This feature makes Example 7 well suited for explaining the rise and fall of industry,
and more generally structural transformation, where sectoral shares exhibit hump-shaped paths
over the course of development (see Bohr et al. 2021, Comin et al. 2021, Fujiwara & Matsuyama
2022, Matsuyama 2019). In contrast, Stone-Geary and other LES, CRES = CRIE, and AIDS
cannot capture such situations, because whether a good is a necessity or a luxury is independent
of the household expenditure.20 A downside of this feature is that nonhomothetic CES does not
aggregate easily across households with different expenditures, unlike LES or price independent
generalized linearity (PIGL).21

19Banks et al. (1997) showed evidence that the budget shares of alcohol and clothing are hump-shaped in
the total expenditure. This motivated them to propose quadratic AIDS, an extension of AIDS in which the
budget shares are quadratic in log total expenditure,which violates global monotonicity. In contrast,Example 7
generates hump shapes without violating global monotonicity.
20This explains why Kongsamut et al. (2001), who used Stone-Geary, were unable to generate the hump-
shaped path of the manufacturing share in spite of having three sectors.
21Nonhomothetic demand systems in which some goods are luxuries for the poor and necessities for the
rich, with nice aggregation properties, exist in the form of hierarchical demand systems (see, e.g., Buera &
Kaboski 2012a,b; Foellmi & Zweimueller 2006; Matsuyama 2000, 2002). In these demand systems, goods
are ranked according to priority, and as the income goes up, the household expands the range of goods by
going down on the shopping list. For example, letU (x) = ∑∞

j=1 β j min{x j , x̂ j}, where x̂ j is the saturation level
of good j. If β j/p j is monotone decreasing, households buy goods j ∈ {1, . . . , J} up to the saturation levels
and some of good J + 1, where J is determined by

∑J
j=1 p j x̂ j ≤ E <

∑J+1
j=1 p j x̂ j . Thus, as E rises, J goes up.

This means that each good is a luxury for poor households and a necessity for rich households. Alternatively,
for β < 1, u(x j ) = β min{x j , 1}, letU (x) = ∑n

j=1(
∏ j

k=1 u(xk )) = u(x1 ) + u(x1 )u(x2 ) + . . . . Then, if x j = 0, we
have ∂U (x)/∂xk = 0 for any j < k. Then, demand is hierarchical for any prices, and each good is a luxury for
the poor and a necessity for the rich. The hierarchical systems have easy aggregation properties but also their
own limitations (i.e., most goods are either consumed at their saturation levels or not at all).
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CRS: constant returns
to scale

5. HOMOTHETIC AND LINEAR HOMOGENEOUS FUNCTIONS:
A QUICK REFRESHER

We now turn to homothetic non-CES. Departing from the standard CES without giving up ho-
motheticity is important for several reasons. First, when wemodel a competitive industry, we often
need to assume that its production technologies satisfy constant returns to scale (CRS).22 This
means that we need to have a linear homogeneous (hence homothetic) function. Second, think
of any level of aggregation that defines a composite good. For example, “food” is not a physical
object. Instead, it is a category of goods, say, bread, fish, fruits, meat, vegetable, etc. Most of these
goods are in turn a composite of finer categories of goods. For example, “fruits” consists of apples,
bananas, oranges, etc., and “vegetable” consists of carrots, cucumbers, onions, potatoes, tomatoes,
etc. In order to give a cardinal (i.e., quantity) interpretation to any composite of goods, so that
the statement like “a 10% increase in food consumption” makes sense, an aggregator that maps a
quantity vector of component goods into a quantity of the composite must be linear homogeneous
(hence homothetic). Third, we often write down a general equilibrium model in which an overall
demand system of the economy is given by multi-layers of the demand systems with nested struc-
tures. Then, assuming demand systems to be nonhomothetic anywhere except in the highest tier
would create a technical problem, because that would prevent us from solving an overall demand
system by breaking it down to smaller problems and solving them sequentially using a multi-stage
budgeting procedure.23 Fourth, we often abstract from nonhomotheticity for tractability. For ex-
ample, the homotheticity assumption may be necessary for ensuring the existence of a steady state
in dynamic general equilibrium.Moreover, homothetic functions not only are used for utility and
production functions but also are used often for matching functions and externality terms to keep
the model scale-free. For all these reasons, it is useful to have linear homogeneous aggregators,
for which we may not want our choice to be restricted to the standard CES.

Let us recall next the definitions of homothetic and linear homogeneous functions and their
basic properties, which can be found in any graduate-level microeconomics textbooks (see, e.g.,
Jehle & Reny 2010, Mas-Colell et al. 1995).

5.1. Homothetic and Linear Homogeneous Functions: A General Case

An aggregator, X (x) : Rn
+ → R+, is linear homogeneous if X (λx) = λX (x) for all λ > 0. An

aggregator, H (x), is homothetic in x ∈ Rn
+ if H (x) = M[X (x)], where M[·] is a monotone trans-

formation with linear homogeneous X (x). Conversely, any homothetic H (x) can be expressed as
H (x) = M[X (x)], where X (x) is determined up to a positive scalar.

In what follows, for concreteness, let us interpret x ∈ Rn
+ as a quantity vector of the factors of

production and X (x) as a CRS production function. Then, with a factor price vector, p ∈ Rn
+, we

define the unit cost function as

P(p) ≡ min
x∈Rn+

{
px|X (x) ≥ 1

}
,

22Recall that the CRS technology of a competitive industry is consistent with the firm-level technologies
subject to increasing returns due to some fixed costs and decreasing returns due to somemanagerial constraints.
As any introductory textbook shows, the U-shaped average cost curve of a firm leads to the constant average
cost of an industry as industry size changes with the number of firms in the industry.
23Of course, for some applications (e.g., Fajgelbaum et al. 2011, Flam & Helpman 1987), it is essential to
have sector-level nonhomothetic demand, but this needs to be combined with some specific assumptions on
intersectoral demand to keep the model tractable.
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HSA: homothetic with
a single aggregator

HDIA: homothetic
direct implicit
additivity

HIIA: homothetic
indirect implicit
additivity

which is linear homogeneous, monotone, and quasi-concave in p ∈ Rn
+. Furthermore, if X (x) is

monotone and quasi-concave, it can be recovered from P(p) as

X (x) ≡ min
p∈Rn+

{
px|P(p) ≥ 1

}
.

Due to this duality, either X (x) or P(p) can be used as a primitive of the CRS technology.

5.2. Homothetic Demands and Budget Shares: A General Case

Let us denote the factor demand by the competitive producers by

x(p) ≡ argmin
x∈Rn+

{
px|X (x) ≥ X

}
.

For a strictly quasi-concave X (x), Shepherd’s lemma tells us that

xi(p) = ∂P(p)
∂ pi

X ,

from which the budget share of factor i can be written as a function of p ∈ Rn
+:

mi = pixi(p)
P(p)X (x)

= ∂ lnP(p)
∂ ln pi

. 14.

From Euler’s theorem on linear homogeneous functions, these shares are added up to 1,∑n
i=1mi = 1, and each of them is homogeneous of degree zero in p.
The inverse factor demand can be given by

p(x) ≡ argmin
p∈Rn+

{
px|P (p) ≥ P

}
.

For a strictly quasi-concave P(p), we have

pi(x) = P
∂X (x)
∂xi

,

from which the budget share of factor i can be written as a function of x ∈ Rn
+:

mi = pi(x) xi
PX (x)

= ∂ lnX (x)
∂ ln xi

. 15.

Again, from Euler’s theorem on linear homogeneous functions, these shares are added up to 1,∑n
i=1mi = 1, and each of them is homogeneous of degree zero in x.

5.3. Three Classes of Linear Homogeneous Functions: An Overview

As shown in Equation 14 and Equation 15, the budget shares can be written as functions of homo-
geneity of degree zero in p ∈ Rn

+ or in x ∈ Rn
+. This also means that they could generally depend

up to (n− 1)-relative prices or (n− 1)-relative quantities.24 For the tractability, some restrictions
may be imposed so that the budget shares depend on a few relative prices or quantities.

To this end,Matsuyama &Ushchev (2017) consider three properties of demand systems called
homothetic with a single aggregator (HSA), homothetic direct implicit additivity (HDIA), and
homothetic indirect implicit additivity (HIIA), each of which is used to define a class of homothetic
functions, because of the following advantages.

■ For n > 2, HSA, HDIA, and HIIA are pairwise disjoint with the sole exception of CES, as
shown in Figure 1. Thus, they offer three alternative ways of departing from CES without
giving up the homotheticity.

24Indeed, it is easy to construct homothetic demand systems with n-factors that depend on (n− 1)-relative
prices or quantities. For example, the nested CES of n-factors, X n(xn ), xn ∈ Rn+, given recursively by
X 1(x1 ) = x1, [X j (x j )]1−1/σ j= [X j−1(x j−1 )]1−1/σ j + (x j )1−1/σ j for j = 2, . . . , n, if σ j ̸= 1, are all different.
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■ They contain some existing families of homothetic functions.
■ Each is tractable because the budget share of each factor is a function of one relative price

(for HSA) or of two relative prices (for HDIA and HIIA) for any number of factors, which
drastically reduces the dimensionality of the problem.

■ The price elasticity of each factor is a function of one relative price in each class. This allows
for a natural extension of the definition of gross substitutes and gross complements.

■ Each is defined nonparametrically and hence is flexible. This provides a template to con-
struct many different types of homothetic functions that relax some features of CES. Some
examples are listed below.

° Different factors have different but constant price elasticities.

° Factors can be gross substitutes and yet essential.25

° Any combination of essential and of inessential factors is possible.

° For HDIA and HIIA, any combination of gross substitutes and gross complements is
possible, and a factor can be a gross substitute or a gross complement, depending on the
relative prices.

We now formally define each of the three classes and explain their properties in some detail.

6. HOMOTHETIC WITH A SINGLE AGGREGATOR

The CRS production function X (x) and its unit cost function P(p) are called HSA if the budget
share of each factor as a function of p ∈ Rn

+ can be written as

mi ≡ ∂ lnP (p)
∂ ln pi

= si
(

pi
A (p)

)
, 16.

where si : R+ → R+ is a function of a single variable, and A(p) is linear homogeneous in p, defined
implicitly and uniquely26 by the adding-up constraint,

n∑
i=1

si
(

pi
A (p)

)
≡ 1, 17.

which ensures, by construction, that the budget shares of all factors are added up to 1. Equation 16
and Equation 17 state that the budget share of a factor is a function of its relative price, zi ≡
pi/A(p), defined as its own price, pi, divided by the common price aggregator, A(p). Notice that
A(p) is independent of i; it is the average factor price against which the relative price of every
factor is measured. In other words, one could keep track of all the cross-price effects in the demand
system by looking at a single aggregator, A(p), which is the key feature of HSA.27 The unit cost
function,P(p), behind thisHSA demand system can be obtained by integrating Equation 16,which
yields

lnP(p) = lnA(p) +
n∑
i=1

pi/A(p)∫
c1

si (ξ )
ξ

dξ ,

25For any X (x) and P(p), factor i is essential (or indispensable) if xi = 0 implies X (x) = 0 (or equivalently, if
pi → ∞ implies P(p) → ∞) and inessential (or dispensable) otherwise. The notion of essentials should not
be confused with that of necessities, which are defined as the goods whose income elasticities are less than 1.
26The unique solution requires that si be either nonincreasing in all i with

∑
i si (0) > 1 >

∑
i si (∞) or

nondecreasing in all i with
∑

i si (0) < 1 <
∑

i si (∞).
27The HSA class is the homothetic restriction of what Pollak (1972) refers to as generalized additively sepa-
rable demand systems. However, we prefer to call it HSA, instead of homothetic with generalized additivity,
because it does not contain any demand systems with additivity (whether direct or indirect or explicit or
implicit) with the exception of CES, as seen in Figure 1.
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where c1 is an integral constant.28 By applying Antonelli’s integrability theorem [Antonelli 1971
(1886),Hurwicz &Uzawa 1971; see also Mas-Colell et al. 1995, chap. 3; Jehle & Reny 2010, chap.
2],Matsuyama &Ushchev (2017, proposition 1-i) show that the demand system is well defined by
Equation 16 and Equation 17 and that the unit cost function,P(p), satisfies the linear homogeneity,
monotonicity, and strict quasi-concavity if zis′i(zi ) < si(zi ) and s′i(zi )s

′
j (z j ) ≥ 0. By defining the price

elasticity function,

−∂ ln xi
∂ ln zi

= 1 − zis′i (zi )
si (zi )

≡ ζi (zi ),

these conditions can be further rewritten as

ζi (zi ) > 0; [1 − ζi (zi )]
[
1 − ζ j

(
z j
)] ≥ 0.

This guarantees the integrability of the HSA demand system, that is, the existence of the
underlying CRS technology, X (x) or P(p), that generates this HSA demand system.

It is also important to note that, for n > 2, P(p) ̸= cA(p) for any constant c > 0 with the sole
exception of CES.29 This can be verified by differentiating Equation 17 to obtain

∂ lnA(p)
∂ ln pi

= zis′i (zi )∑
k zks

′
k (zk )

= [1 − ζi (zi )] si (zi )∑
k [1 − ζk (zk )] sk (zk )

̸= si (zi ) = ∂ lnP(p)
∂ ln pi

,

unless ζi(zi ) = ζ j (z j ) for all i ̸= j ∈ I, which requires, for n > 2, ζi(zi ) = σ > 0 or si(zi ) = βiz1−σ
i

for all i ∈ I. This should not come as a surprise. After all,A(p) is the average factor price, capturing
the cross-price effects in the demand system, while P(p) is the unit cost of production, capturing
the productivity (or welfare) effects of factor price changes. There is no reason to think a priori
that they should move together.

Because the budget share of i ∈ I is a function of a single relative price, zi, si(zi ), the notion of
gross substitutes and gross complements under CES can be extended naturally. That is, we call
factor i ∈ I a gross substitute (complement) when si(zi ) is strictly decreasing (strictly increasing) in
zi. In other words, factor i ∈ I is a gross substitute when ζi(zi ) ≡ 1 − zis′i(zi )/si(zi ) > 1, and factor
i ∈ I is a gross complement when 0 < ζi(zi ) < 1. Notice that one of the integrability conditions,
[1 − ζi(zi )][1 − ζ j (z j )] ≥ 0, implies that HSA does not allow for a mixture of gross substitutes and
gross complements. However, a factor with ζi(zi ) = 1 can coexist either with gross substitutes or
with gross complements.30

Before proceeding to some examples, let us point out that there exists an alternative and yet
equivalent definition of HSA. That is, the CRS production function X (x) and its unit cost func-
tion P(p) are called HSA if the budget share of factor i as a function of x ∈ Rn

+ can be written
as

mi ≡ ∂ lnX (x)
∂ ln xi

= s∗i

(
xi

A∗ (x)

)
, 18.

28Note that this constant cannot be pinned down. First, A(p), the “average factor price,” does not depend on
the unit of measurement of the final good. In contrast, P(p) is the cost of producing one unit of the final good
when the factors prices are given by p; hence, it depends not only on the units of measurement of factors
but also on those of the final good. Second, a change in TFP, though it affects P(p), leaves the relative factor
demand, hence A(p), unaffected.
29The condition n > 2 is necessary. If n = 2, the budget share of both factors is always a function of one relative
price. Hence, all homothetic functions are HSA. In other words, HSA are restrictive only for n > 2.
30One could also show that both Allen/Uzawa and Morishina elasticities of substitution between i and j are
greater than one if ζi (zi ), ζ j (z j ) > 1 and smaller than one if ζi (zi ), ζ j (z j ) < 1.
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TFP: total factor
productivity

where s∗i : R+ → R+ is a function of a single variable, its relative quantity, yi ≡ xi/A∗(x), and A∗(x)
is the common quantity aggregator defined implicitly and uniquely31 by

n∑
i=1

s∗i

(
xi

A∗ (x)

)
≡ 1. 19.

The CRS production function X (x) behind this HSA demand system can be obtained by
integrating Equation 18, which yields

lnX (x) = lnA∗(x) +
n∑
i=1

xi/A∗ (x)∫
c∗1

s∗i (ξ )
ξ

dξ .

Matsuyama & Ushchev (2017) show that the two definitions define the same class of
homothetic functions, with the one-to-one correspondence between si(zi ) and s∗i (yi ), defined by

s∗i (yi ) ≡ si
(
s∗i (yi )
yi

)
⇔ si (zi ) ≡ s∗i

(
si (zi )
zi

)
.

Note that differentiating either of these equalities yields

ζi (zi ) ≡ 1 − d ln si (zi )
d ln zi

=
[
1 − d ln s∗i (yi )

d ln yi

]−1

≡ ζ ∗
i (yi ) ,

so that factor i ∈ I is a gross substitute (complement) if and only if si(zi ) is strictly decreasing (in-
creasing),which is equivalent to ζi(zi ) = ζ ∗

i (yi ) > 1 (0 < ζi(zi ) = ζ ∗
i (yi ) < 1),which is equivalent to

s∗i (yi ) being strictly increasing (decreasing). Furthermore, from pixi/P(p)X (x) = si(zi ) = s∗i (yi ) =
ziyi = pixi/A(p)A∗(x), we have A∗(x)/X (x) = P(p)/A(p), which cannot be a constant with the sole
exception of CES for n > 2.

We now turn to several examples of HSA.

6.1. Example 8: CES as a Special Case of HSA

Let si(zi ) = βiz1−σ
i ⇔ s∗i (yi ) = β

1
σ

i yi
1− 1

σ with σ > 0; ̸= 1, βi > 0. Then, we have ζi(zi ) = ζ ∗
i (yi ) =

σ > 0; from Equation 16 and Equation 17 we have

A(p) =
(

n∑
i=1

βi p1−σ
i

) 1
1−σ

= ZP(p) ;

and from Equation 18 and Equation 19 we have

A∗(x) =
(

n∑
i=1

β
1
σ

i x
1− 1

σ

i

) σ
σ−1

= X (x)
Z

,

where Z > 0 is an integral constant, which can be interpreted as total factor productivity (TFP).
Note that both A(p) and A∗(x) are independent of TFP, which is true for any HSA demand
system. Indeed, TFP shocks to the CRS production function do not affect its relative factor
demand. Note also that A(p)/P(p) = X (x)/A∗(x) = Z is constant. This is true only for CES, as
already pointed out.

For σ > 1, si(zi ) is globally strictly decreasing for i ∈ I, which means that every factor is always
a gross substitute, and yet si(zi ) > 0 for any zi < ∞, meaning that it has no choke price.Moreover,

31The unique solution requires that s∗i be either nonincreasing in all i with
∑

i s
∗
i (0) > 1 >

∑
i s

∗
i (∞) or

nondecreasing in all i with
∑

i s
∗
i (0) < 1 <

∑
i s

∗
i (∞).
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the generic condition for factor i being inessential, which can be expressed as

si (∞) +
∑
k̸=i

sk (0) > 1 and

∞∫
c1

si (ξ )
ξ

dξ < ∞,

automatically holds so that every factor is inessential. For σ < 1, si(zi ) is globally strictly increasing
for i ∈ I, so that

∫∞
c1
(si(ξ )/ξ )dξ = ∞, which means that every factor i is always a gross complement

and essential.
Under generic HSA, it is easy to verify that, when si(zi ) is globally strictly increasing for all i ∈ I

(the case of gross complements), all factors must be essential. On the other hand, when si(zi ) is
globally strictly decreasing for all i ∈ I (the case of gross substitutes), there are four possibilities:

■ limzi→∞ si(zi ) = si(∞) > 0, so that
∫∞
c1
(si(ξ )/ξ )dξ = ∞, hence factor i is essential.

■ si(zi ) > 0 for zi < ∞; limzi→∞ si(zi ) = 0,
∫∞
c1
(si(ξ )/ξ )dξ = ∞, hence factor i is essential.

■ si(zi ) > 0 for zi < ∞; limzi→∞ si(zi ) = 0,
∫∞
c1
(si(ξ )/ξ )dξ < ∞, which means that factor i is

inessential if si(∞) +∑
k̸=i sk(0) > 1.

■ si(zi ) = 0 for zi ≥ z̄i for a finite z̄i (zero demand for pi ≥ z̄iA(p), where z̄iA(p) is the
choke price) and

∫∞
c1
(si(ξ )/ξ )dξ < ∞, which means that factor i is inessential if si(∞) +∑

k ̸=i sk(0) > 1.

Under CES with σ > 1, only the third case is allowed. We now turn to examples for the first
case, in which some gross substitutes factors can be essential.

6.2. Example 9: Hybrids of Cobb-Douglas and CES Under HSA

Consider the HSA demand system, Equation 16 and Equation 17, given by

si (zi ) = εαi + (1 − ε)βizi1−σ ; 0 < ε < 1, αi ≥ 0, βi > 0,
n∑

k=1

αk =
n∑

k=1

βk = 1.

Then, we have

ζi (zi ) = εαi + σ (1 − ε)βizi1−σ

εαi + (1 − ε)βizi1−σ
,

A (p) =
(

n∑
i=1

βi p1−σ
i

) 1
1−σ

, P (p) = 1
Z

(
n∏
i=1

pαii

)ε

(A (p))1−ε
.

This is a convex combination ofCobb-Douglas andCES since it is Cobb-Douglas for ε = 1 and
CES for ε = 0. Similarly, consider theHSA inverse demand system,Equation 18 and Equation 19,
given by

s∗i (yi ) = εαi + (1 − ε)β1/σ
i yi1−1/σ ; 0 < ε < 1, αi ≥ 0, βi > 0,

n∑
k=1

αk =
n∑

k=1

βk = 1.

Then, we have

ζ ∗
i (yi ) = εαi + (1 − ε)β1/σ

i y1−1/σ

εαi + (1/σ ) (1 − ε)β1/σ
i y1−1/σ

,

A∗(x) =
(

n∑
i=1

β
1/σ
i x1−1/σ

i

) σ
σ−1

, X (x) = Z

(
n∏
i=1

xαi
i

)ε

(A∗(x))1−ε
.

This is another convex combination of Cobb-Douglas and CES.32 In both cases, all factors are
gross substitutes for σ > 1, and yet factor i is essential if αi > 0 and inessential if αi = 0. Thus,

32These two convex combinations are not equivalent, because s∗i (yi ) ̸= si (s∗i (yi )/yi ) and si (zi ) ̸= s∗i (si (zi )/zi ).
Note also that neither of them is a nested CES, because αiβi ̸= 0 for some i.
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some gross substitutes are essential. Furthermore, any combination of essential and inessential
factors can coexist.

To see implications, consider a model of international trade where each country produces the
single nontradeable consumption good using tradeable factors under the HSA technologies de-
scribed above.With a small ε, the demand system can be approximated byCESwith trade elasticity
σ . If it is CES (ε = 0), autarky would lead to a small welfare loss with a moderately large σ > 1.
Yet, for an arbitrarily small but positive ε > 0, the welfare loss of autarky, measured in the
cost-of-living index, is infinity if a country has no domestic supply of an essential factor.33

More broadly, when gross substitutes are essential with their price elasticities converging to
1 as they become increasingly scarcer, the welfare impacts of large shocks—say, sanctions or
pandemic-induced lockdowns—would be large. This offers a caution against assessing the im-
pacts of large changes by using the empirical evidence obtained by local changes as “disciplines”
under the straitjacket of CES.

The next example features gross substitutes with the choke prices.

6.3. Example 10: “Separable” Translog

Two often-used non-CES are translog unit cost functions and translog production functions
(Christensen et al. 1973, 1975). They are isolated from CES and not an extension of CES.Never-
theless, it is worth discussing them here, because they have two subfamilies that belong to HSA.

First, consider the translog unit cost function

P(p) = 1
Z
exp

 n∑
i=1

δi ln pi − 1
2

n∑
i, j=1

γi j ln pi ln p j

,
where δi > 0; (γi j ) is symmetric and non-negative semidefinite, which can be normalized as∑n

j=1 δ j = 1; and
∑n

j=1 γi j = 0. In general, the translog unit cost function is not HSA. However,
under the following “separability” condition, satisfied by symmetric translog

γi j =
{

γ βi (1 − βi ) , i = j
−γ βiβ j , i ̸= j

, γ ≥ 0; βi > 0;
n∑
i=1

βi = 1,

it is HSA with

si
(

pi
A (p)

)
= max

{
δi − γ βi ln

pi
A (p)

, 0
}
.

If γ = 0, this is Cobb-Douglas. If γ > 0, all factors are gross substitutes with the choke prices
z̄iA(p), where z̄i = exp(δi/γ βi ), and inessential. For pi < z̄iA(p) for all i, we have

lnA(p) =
n∑
i=1

βi ln pi,

P(p) = 1
Z
exp


n∑
i=1

δilnpi − γ

2

 n∑
i=1

βi(lnpi )
2 −

(
n∑
i=1

βilnpi

)2
 ̸= A (p).

33Using nested CES, Ossa (2015) offered a similar caution against Arkolakis et al.’s (2012) model and a large
number of subsequent studies, which have used models with CES demand systems and concluded that the
gains from trade (or the loss from autarky) are rather small, given relatively large estimated values of the trade
elasticities.
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Next, consider the translog production function

X (x) = Z exp

 n∑
i=1

δi ln xi − 1
2

n∑
i, j=1

γi j ln xi ln x j

,
where δi > 0; (γi j ) is symmetric and non-negative semidefinite, which can be normalized as∑n

j=1 δ j = 1; and
∑n

j=1 γi j = 0. In general, the translog production function is not HSA.However,
under the following “separability” condition, satisfied by symmetric translog

γi j =
{

γβi (1 − βi ) , i = j
−γβiβ j , i ̸= j

γ ≥ 0; βi > 0;
n∑
i=1

βi = 1,

it is HSA with

s∗i

(
xi

A∗ (x)

)
= max

{
δi − γβi ln

xi
A∗ (x)

, 0
}
.

If γ = 0, this is Cobb-Douglas. If γ > 0, all factors are gross complements with the saturation
points, ȳiA∗(x), where ȳi = exp(δi/γ βi ), and essential. For xi < ȳiA∗(x), for all i, we have

lnA∗(x) =
n∑
i=1

βi ln xi,

X (x) = Z · exp


n∑
i=1

δi ln xi − γ

2

 n∑
i=1

βi(ln xi )
2 −

(
n∑
i=1

βi ln xi

)2
 ̸= A∗(x).

These calculations reveal the restrictive nature of the translog aggregators, which seems unno-
ticed by many in spite of their popularity as an alternative to CES. In the case of the translog unit
cost function, it allows only for gross substitutes and inessential factors with the choke prices. In
the case of the translog production function, it allows only for gross complements and essential
factors with the saturation point.34

6.4. Example 11: HSA Demand Systems with Constant but Different
Price Elasticities)

Let

si (zi ) = βi(zi )1−σi ⇔ s∗i (yi ) = β
1
σi
i (yi )

1− 1
σi ,

where either σi ≤ 1 for all i, or σi ≥ 1 for all i. Then, A(p) and A∗(x) are given implicitly by
n∑
i=1

βi

(
pi

A (p)

)1−σi

=
n∑
i=1

β
1/σi
i

(
xi

A∗(x)

)1−1/σi

= 1,

34Both translog unit cost and production functions, as well as their nonhomothetic counterparts, AIDS, are
often touted as flexible. But they are flexible only in the sense that they offer local approximations to any
aggregators up to their second derivatives. Such approximations may be good enough for studying the impacts
of small shocks to a competitive economy, where all firms are price takers. However, they should be used with
great caution when studying the impacts of large shocks or even those of small shocks if some firms have the
price-setting powers, since the results would then depend on the global properties and/or the third or higher
derivatives of the aggregators.
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and we have

lnP(p) = lnA(p) +
n∑
i=1

pi/A(p)∫
c1

βi(ξ )−σidξ ,

lnX (x) = lnA∗(x) +
n∑
i=1

xi/A∗ (x)∫
c∗1

β
1
σi
i (ξ )−

1
σi dξ .

Both Allen/Uzawa and Morishima elasticities of substitution between each pair are variable
unless σi = σ for all i ∈ I. However, holding A(p) or A∗(x) fixed, the own price elasticity of each
factor is constant but different, because ζi(pi/A(p)) = ζ ∗

i (xi/A
∗(x)) = σi. Furthermore, for a large

n, the impact of a change in pi on A(p) and the impact of a change in xi on A∗(x) are negligible.
Hence, the own price elasticity when all other prices are fixed, or when all other quantities are
fixed, is approximately constant and converging to σi, as n → ∞.35 Thus, this example, along with
Example 13 and Example 15, discussed below, can isolate the role of price elasticity differences
across factors without giving up homotheticity, unlike Example 5 under DEA, which are subject
to Pigou’s Law, and Example 6 under IEA, which are subject to indirect Pigou’s Law.

7. HOMOTHETIC DIRECT IMPLICIT ADDITIVITY

7.1. Definition

The CRS production function X (x) and its unit cost function P(p) are called HDIA if X (x) can
be written as

n∑
i=1

ϕi

(
xi

X (x)

)
= 0, 20.

where ϕi : R+ → R, i ∈ I, are strictly increasing and strictly concave and satisfy
n∑
i=1

ϕi (0) < 0 <

n∑
i=1

ϕi (∞).

This ensures the unique existence of monotonic and quasi-concave X (x). Clearly, HDIA is the
homothetic restriction of DIA, as shown in Figure 1.36

Solving P(p) ≡ minx∈Rn+ {px|X (x) ≥ 1} subject to Equation 20 yields theHDIA demand system

∂ lnP(p)
∂ ln pi

= pi
P(p)

(ϕ′
i )

−1
(

pi
B(p)

)
, 21.

35The own price elasticity of each factor is constant without these qualifications for the case of a continuum of
factors, with the summations in Equation 16 and Equation 17 or those in Equation 18 and Equation 19 being
replaced by the integrals.
36According to the original definition of DIA by Hanoch (1975), its homothetic restriction HDIA should
be written as

∑n
i=1 ϕi (xi/X (x)) = 1. However, the right-hand side of Equation 20 can be any constant, and

we set it equal to zero, which has two advantages. First, one could restrict all ϕi to be strictly increasing
and concave without loss of generality. Second, multiplying all ϕi by a positive constant would not change
the function defined. For example, the Kimball aggregator, a special case of HDIA, is typically defined as∑n

i=1 ϕ(xi/X (x)) = 1, where ϕ is strictly increasing and concave. This definition imposes not only symme-
try but also gross substitutability. Furthermore, the function defined changes if ϕ is multiplied by a positive
constant.
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where B(p) is the Lagrange multiplier associated with the minimization problem; it is a linear
homogeneous function in p ∈ Rn

+, implicitly defined by
n∑

k=1

ϕk

((
ϕ′
k

)−1
(

pk
B (p)

))
≡ 0,

and P(p) is the unit cost function, related to B(p) as follows:

P(p) =
n∑

k=1

pk
(
ϕ′
k

)−1
(

pk
B (p)

)
.

The HDIA inverse demand system can be obtained by differentiating Equation 20 as follows:

∂ lnX (x)
∂ ln xi

= xi
C∗ (x)

ϕ′
i

(
xi

X (x)

)
, 22.

where C∗(x) is a linear homogeneous function in x ∈ Rn
+ defined by

C∗(x) ≡
n∑

k=1

xkϕ′
k

(
xk

X (x)

)
.

From these, we also obtain

pk
B (p)

= ϕ′
k

(
xk
X (x)

)
⇔ xk

X (x)
= (

ϕ′
k

)−1
(

pk
B (p)

)
and

P(p)
B (p)

=
n∑

k=1

pk
B (p)

(
ϕ′
k

)−1
(

pk
B (p)

)
=

n∑
k=1

ϕ′
k

(
xk
X (x)

)
xk
X (x)

= C∗(x)
X (x)

.

Notice that Equation 21 and Equation 22 suggest that the budget share of i under HDIA
depends on the two different relative prices, pi/B(p) and pi/P(p), or on the two relative quantities,
xi/X (x) and xi/C∗(x), unless P(p)/B(p) = C∗(x)/X (x) = c for a constant c > 0. In other words,
HDIA belongs to HSA if and only if the budget share of i can be written as a function of pi/P(p)
or xi/X (x) only. This means that HDIA and HSA do not overlap with the sole exception of CES
for n > 2, as shown in Figure 1.

7.2. Price Elasticity Function Under HDIA

Even though the budget share of i underHDIA depends on two different relative quantities, one of
them, xi/C∗(x), enters proportionately. Thus, the price elasticity depends solely on i ≡ xi/X (x),
as follows:

−∂ ln(xi/X (x))
∂ ln(pi/B (p))

= − ϕi
′ ( i )

iϕi
′′ ( i )

≡ ζDi ( i ) > 0.

Cobb-Douglas is a special case, ζDi ( i ) = 1, where

ϕi ( i ) = αi ln
(
Z i

αi

)
⇒ X (x) = Z

n∏
i=1

(
xi
αi

)αi

.

CES is a special case, ζDi ( i ) = σ , where

ϕi ( i ) = βi
(Z i/βi )

1−1/σ − 1
1 − 1/σ

⇒ X (x) = Z

(
n∑
i=1

β
1
σ

i x
1− 1

σ

i

) 1
1− 1

σ

.
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Note that, under CES with gross substitutes, ζDi ( i ) = σ > 1, ϕi( i ) is unbounded from above
and bounded from below, while under CES with gross complements, ζDi ( i ) = σ < 1, ϕi( i ) is
unbounded from below and bounded from above. Thus, even though the price elasticity function,
ζDi ( i ), is defined locally, the assumption that it is globally constant imposes a strong restriction on
its global property. Cobb-Douglas, ζDi ( i ) = 1, is the borderline case, where ϕi( i ) is unbounded
both from below and from above.

In what follows, we call factor-i a gross substitute if ζD
i ( i ) > 1 and a gross complement if

0 < ζDi ( i ) < 1. Recall that, for HDIA to be well defined by Equation 20, ϕi; i ∈ I, only need to
be strictly increasing and strictly concave and satisfy

∑n
i=1 ϕi(0) < 0 <

∑n
i=1 ϕi(∞). Hence, unlike

HSA,HDIA does not impose any restriction on the price elasticity functions, ζDi ( i ); i ∈ I, except
that they all need to be positive. In particular, it is possible to have ζDi ( i ) > 1 > ζDj ( j ), and
hence gross substitutes and gross complements can coexist. Indeed, ζDi ( i ) − 1 may switch signs,
and hence factor i could switch from being a gross substitute to being a gross complement as i

changes.

7.3. Essential Versus Inessential Factors Under HDIA

Recall that factor i is essential if xi = 0 implies X (x) = 0 and inessential otherwise. Under HDIA,
this means that factor i is essential if and only if ϕi(0) +

∑n
k̸=i ϕk( k ) < 0 for all k > 0. This

condition is always satisfied under CES with gross complements or under Cobb-Douglas, because
ϕi( i ) is unbounded from below. On the other hand, this condition is never satisfied under CES
with gross substitutes, because ϕi( i ) is bounded from below and ϕk( k ) is unbounded from above.
This is the reason why factors are inessential if and only if they are gross substitutes under CES.

However, gross substitutes can be essential underHDIA.To see this, let ϕi( i ) = βig( i ), where
βi > 0 is decreasing in i and

∑n
i=1 βi = 1, g( i ) is strictly increasing and strictly concave, and we

have −∞ < g(0) < 0 < g(∞) < ∞. Then, factors i = 1, . . . , j are essential and factors i = j +
1, . . . , n are inessential for

β j

1 − β j
> −g (∞)

g (0)
>

β j+1

1 − β j+1
> 0.

This example suggests that HDIA can have j essential factors and n− j inessential factors,
where j = 0, 1, . . . , n. Furthermore, the price elasticity function, ζDi ( i ) = −g′( i )/ ig′′( i ) can
be arbitrary, and hence the factors could be gross substitutes or gross complements, except
asymptotically, as i → 0 or as i → ∞.

It is also easy to construct an example using a convex combination of Cobb-Douglas and CES,
as follows.

7.3.1. Example 12: a Hybrid of Cobb-Douglas and CES under HDIA. Let

ϕi ( i ) = εαi log
(
Z i

αi

)
+ (1 − ε)βi

(Z i/βi )
1−1/σ − 1

1 − 1/σ

⇒ ζDi ( i ) = εαi + (1 − ε)βi(Z i/βi )
1−1/σ

εαi + (1/σ ) (1 − ε)βi(Z i/βi )
1−1/σ ,

where 0 < ε < 1, αi ≥ 0 and βi > 0, and
∑n

k=1 αk = ∑n
k=1 βk = 1. The implications are similar

to Example 9 under HSA and Example 14 under HIIA.
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CRESH: constant
ratios of elasticities of
substitution
homothetic

7.3.3. Example 13: HDIA demand system with constant but different elasticities. Let

ϕi ( i ) = βi
(Z i/βi )

1−1/σi − 1
1 − 1/σi

⇒ ζDi ( i ) = σi.

The constant ratios of elasticities of substitution homothetic (CRESH) class proposed by Hanoch
(1971) and recently applied by Berlingieri et al. (2022) is a special case of this example, where
σi > 1 for at least some i. The properties are similar to Example 11 under HSA, except that there
is no need to impose the restriction that either σi ≤ 1 for all i or σi ≥ 1 for all i.

8. HOMOTHETIC INDIRECT IMPLICIT ADDITIVITY

8.1. Definition

The CRS production function, X (x), and its unit cost function, P(p), are called HIIA if P(p) can
be written as

n∑
i=1

θi

(
pi

P (p)

)
= 0, 23.

where θi : R+ → R, i ∈ I, are strictly increasing and concave and satisfy
n∑
i=1

θi (0) < 0 <

n∑
i=1

θi (∞).

This ensures the unique existence of monotonic and quasi-concave P(p). Clearly, HIIA is the
homothetic restriction of IIA, as shown in Figure 1.37

The HIIA inverse demand system can be obtained by differentiating Equation 23,

∂ lnP(p)
∂ ln pi

= pi
C(p)

θ ′
i

(
pi

P(p)

)
, 24.

where C(p) is a linear homogenous function in p ∈ Rn
+ defined by

C(p) ≡
n∑

k=1

pkθ ′
k

(
pk
P(p)

)
.

Solving X (x) ≡ minp∈Rn+ {px|P(p) ≥ 1} subject to Equation 23 yields the HIIA inverse demand
system

∂ lnX (x)
∂ ln xi

= xi
X (x)

(θ ′
i )

−1
(

xi
B∗(x)

)
, 25.

where B∗(x) is the Lagrange multiplier associated with the above minimization problem; it is a
linear homogeneous function in x ∈ Rn

+, implicitly defined by
n∑

k=1

θk

((
ϕ′
k

)−1
(

xk
B∗(x)

))
= 0,

37According to the original definition of IIA by Hanoch (1975), its homothetic restriction HIIA should be
defined as

∑n
i=1 θi (pi/P(p)) = 1. However, the right-hand side of Equation 23 can be any constant and we

set it equal to 0, which has two advantages. First, one could restrict all θi to be strictly increasing and strictly
concave without loss of generality. Second, multiplying all θi by a positive constant would not change the
function defined.
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and X (x), the production function, is related to B∗(x) as follows:

X (x) =
n∑

k=1

xk
(
θ ′
k

)−1
(

xk
B∗(x)

)
.

From these, we also obtain

pi
P(p)

= (
θ ′
k

)−1
(

xk
B∗(x)

)
⇔ xk

B∗(x)
= θ ′

i

(
pi

P(p)

)
and

X (x)
B∗(x)

=
n∑

k=1

xk
B∗(x)

(
θ ′
k

)−1
(

xk
B∗(x)

)
=

n∑
k=1

θ ′
i

(
pi

P(p)

)
pi

P(p)
= C(p)
P(p)

.

Notice that Equation 24 and Equation 25 suggest that the budget share of i under HIIA de-
pends on the two different relative prices, pi/C(p) and pi/P(p) or on the two relative quantities,
xi/B∗(x) and xi/X (x), unless C(p)/P(p) = X (x)/B∗(x) = c for a constant c > 0. In other words,
HIIA belongs to HSA if and only if the budget share of i can be written as a function of pi/P(p) or
xi/X (x) only. This means that HIIA and HSA do not overlap with the sole exception of CES for
n > 2, as shown in Figure 1. Comparing Equation 21 and Equation 24 or Equation 22 and Equa-
tion 25 also suggests that HDIA andHIIA can overlap if and only if both P(p)/B(p) = C∗(x)/X (x)
andC(p)/P(p) = X (x)/B∗(x) are positive constants,which implies HDIA andHIIA do not overlap
with the sole exception of CES for n > 2, as shown in Figure 1.

8.2. Price Elasticity Function Under HIIA

Even though the budget share of i under HIIA depends on two different relative prices, one of
them, pi/C(p), enters proportionately. Thus, the price elasticity depends solely on zi ≡ pi/P(p),
as follows:

−∂ ln (xi/B∗(x))
∂ ln(pi/P(p))

= −ziθi ′′(zi )
θi

′(zi )
≡ ζ Ii (zi ) > 0.

Cobb-Douglas is a special case, ζ Ii (zi ) = 1, where

θi (zi ) = αi log
(zi
Z

)
⇒ P(p) = 1

Z

n∏
i=1

pαii .

CES is a special case, ζ Ii (zi ) = σ , where

θi (zi ) = βi
(zi/Z)1−σ − 1

1 − σ
⇒ P(p) = 1

Z

(
n∑
i=1

βi p1−σ
i

) 1
1−σ

.

Note that, under CES with gross substitutes, ζ Ii (zi ) = σ > 1, θi(zi ) is unbounded from below
and bounded from above, while under CES with gross complements, ζ Ii (zi ) = σ < 1, θi(zi ) is un-
bounded from above and bounded from below. Thus, even though the price elasticity function,
ζ Ii (zi ), is defined locally, the fact that it is constant imposes a strong restriction on its global prop-
erty. Cobb-Douglas, ζ Ii (zi ) = 1, is the borderline case, where θi(zi ) is unbounded both from below
and from above.

In what follows, we call factor i a gross substitute if ζ I
i (zi ) > 1 and a gross complement

if ζ Ii (zi ) < 1. Recall that, for HIIA to be well defined by Equation 23, θi; i ∈ I, only need to
be strictly increasing, and strictly concave, and satisfy

∑n
i=1 θi(0) < 0 <

∑n
i=1 θi(∞). Hence,

unlike HSA but similar to HDIA, HIIA does not impose any restriction on the price elasticity
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CDESH:
constant differences of
elasticities of
substitution
homothetic

functions, ζ Ii (zi ); i ∈ I, except that they all need to be positive. In particular, it is possible to have
ζ Ii (zi ) > 1 > ζ Ij (z j ), and hence gross substitutes and gross complements can co-exist. Indeed,
ζ Ii (zi ) − 1 may switch signs, and hence factor i could switch from being a gross substitute to being
a gross complement as zi changes.

8.3. Essential Versus Inessential Factors Under HIIA

Recall that factor i is essential if pi → ∞ implies P(p) → ∞, and inessential otherwise. Under
HIIA, this means that factor i is essential if and only if θi(∞) +∑n

k̸=i θk(zk ) > 0 for all zk > 0. This
condition is always satisfied under CES with gross complements or under Cobb-Douglas, because
θi(zi ) is unbounded from above. On the other hand, this condition is never satisfied under CES
with gross substitutes, because θi(zi ) is bounded from above and θk(zk ) is unbounded from below.
This is why factors are inessential if and only if they are gross substitutes under CES.

However, gross substitutes can be essential under HIIA. To see this, let θi(zi ) = βig(zi ),
where βi > 0 is decreasing in i,

∑n
i=1 βi = 1, g(zi ) is strictly increasing and strictly concave,

and we have −∞ < g(0) < 0 < g(∞) < ∞. Then, factors i = 1, . . . , j are essential and factors
i = j + 1, . . . , n are inessential for

β j

1 − β j
> − g (0)

g (∞)
>

β j+1

1 − β j+1
> 0.

This example suggests that HIIA can have j essential factors and n− j inessential factors,
where j = 0, 1, . . . , n. Furthermore, the price elasticity function, ζ Ii (zi ) = −zig′′(zi )/g′(zi ) > 0 can
be arbitrary, and hence the factors could be gross substitutes or gross complements, except
asymptotically, as zi → 0 or as zi → ∞.

It is also easy to construct an example using a convex combination of Cobb-Douglas and CES,
as follows.

8.3.1. Example 14: a hybrid of Cobb-Douglas and CES under HIIA. Let

θi (zi ) = εαi ln
(zi
Z

)
+ (1 − ε)βi

(zi/Z)1−σ − 1
1 − σ

⇒ ζ Ii (zi ) = εαi + σ (1 − ε)βi(zi/Z)1−σ

εαi + (1 − ε)βi(zi/Z)1−σ
,

where 0 < ε < 1, αi ≥ 0, βi > 0, and
∑n

k=1 αk = ∑n
k=1 βk = 1. The implications are similar to

Example 9 under HSA and Example 12 under HDIA.

8.3.2. Example 15: HDIA demand system with constant but different elasticities. Let

θi(zi ) = βi
(zi/Z)1−σi − 1

1 − σi
⇒ ζ Ii (zi ) = σi.

This corresponds to what Hanoch (1975) called homothetic CDE, but we prefer to call it constant
difference of elasticities of substitution homothetic (CDESH) to make it parallel to his terminol-
ogy of CRESH.The properties of CDESH are similar to Example 11 under HSA and Example 13
under HDIA, except that, unlike in Example 11 but like Example 13, there is no need to impose
the restriction that either σi ≤ 1 for all i or σi ≥ 1 for all i.
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9. CONCLUDING REMARKS

Instead of recapitulating what has been covered, let me mention briefly one important topic I was
unable to cover in this article due to the space limitation.

Following Dixit & Stiglitz (1977, section I) and Melitz (2003), most monopolistic competition
models assume the CES demand system, which implies that all firms face demand curves with
constant and common price elasticity and hence charge the exogenous and common markup rate.
One of the most active areas of research today is to allow for endogenous and/or heterogeneous
markup rates by replacing CES with non-CES, most of which belong to the classes of non-CES
reviewed in this article.

To apply non-CES to monopolistic competition models, one must confront a whole set of ad-
ditional issues. To ensure that no firm has the power to affect the aggregate price indices through
its monopoly power over its own variety, we need to redefine the demand systems over a contin-
uum of product varieties. To ensure that marginal revenue for each firm is positive, we need to
assume that all products must be gross substitutes. Furthermore, the marginal revenue for each
firm needs to be monotonically decreasing in its output (or increasing in its price) along its de-
mand curve to ensure that the profit function is well behaved. To allow for entry and exit and for
endogenous product variety, all products must be inessential. It may also be necessary to impose
additional restrictions on the demand systems to ensure the existence and uniqueness of free-
entry equilibrium. These are just some of the additional considerations that affect the pros and
cons of using different classes of non-CES.38 Addressing all these issues adequately and reviewing
this rapidly growing literature on monopolistic competition under non-CES calls for an entirely
separate treatment, which I hope to do in the near future.
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